Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Infect Dis ; 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1713630

ABSTRACT

INTRODUCTION: Most studies of solid organ transplant (SOT) recipients with COVID-19 focus on outcomes within one month of illness onset. Delayed mortality in SOT recipients hospitalized for COVID-19 has not been fully examined. METHODS: We used data from a multicenter registry to calculate mortality by 90 days following initial SARS-CoV-2 detection in SOT recipients hospitalized for COVID-19 and developed multivariable Cox proportional-hazards models to compare risk factors for death by days 28 and 90. RESULTS: Vital status at day 90 was available for 936 of 1117 (84%) SOT recipients hospitalized for COVID-19: 190 of 936 (20%) died by 28 days and an additional 56 of 246 deaths (23%) occurred between days 29 and 90. Factors associated with mortality by day 90 included: age > 65 years [aHR 1.8 (1.3-2.4), p =<0.001], lung transplant (vs. non-lung transplant) [aHR 1.5 (1.0-2.3), p=0.05], heart failure [aHR 1.9 (1.2-2.9), p=0.006], chronic lung disease [aHR 2.3 (1.5-3.6), p<0.001] and body mass index ≥ 30 kg/m 2 [aHR 1.5 (1.1-2.0), p=0.02]. These associations were similar for mortality by day 28. Compared to diagnosis during early 2020 (March 1-June 19, 2020), diagnosis during late 2020 (June 20-December 31, 2020) was associated with lower mortality by day 28 [aHR 0.7 (0.5-1.0, p=0.04] but not by day 90 [aHR 0.9 (0.7-1.3), p=0.61]. CONCLUSIONS: In SOT recipients hospitalized for COVID-19, >20% of deaths occurred between 28 and 90 days following SARS-CoV-2 diagnosis. Future investigations should consider extending follow-up duration to 90 days for more complete mortality assessment.

2.
Am J Transplant ; 22(1): 279-288, 2022 01.
Article in English | MEDLINE | ID: covidwho-1405162

ABSTRACT

Mortality among patients hospitalized for COVID-19 has declined over the course of the pandemic. Mortality trends specifically in solid organ transplant recipients (SOTR) are unknown. Using data from a multicenter registry of SOTR hospitalized for COVID-19, we compared 28-day mortality between early 2020 (March 1, 2020-June 19, 2020) and late 2020 (June 20, 2020-December 31, 2020). Multivariable logistic regression was used to assess comorbidity-adjusted mortality. Time period of diagnosis was available for 1435/1616 (88.8%) SOTR and 971/1435 (67.7%) were hospitalized: 571/753 (75.8%) in early 2020 and 402/682 (58.9%) in late 2020 (p < .001). Crude 28-day mortality decreased between the early and late periods (112/571 [19.6%] vs. 55/402 [13.7%]) and remained lower in the late period even after adjusting for baseline comorbidities (aOR 0.67, 95% CI 0.46-0.98, p = .016). Between the early and late periods, the use of corticosteroids (≥6 mg dexamethasone/day) and remdesivir increased (62/571 [10.9%] vs. 243/402 [61.5%], p < .001 and 50/571 [8.8%] vs. 213/402 [52.2%], p < .001, respectively), and the use of hydroxychloroquine and IL-6/IL-6 receptor inhibitor decreased (329/571 [60.0%] vs. 4/492 [1.0%], p < .001 and 73/571 [12.8%] vs. 5/402 [1.2%], p < .001, respectively). Mortality among SOTR hospitalized for COVID-19 declined between early and late 2020, consistent with trends reported in the general population. The mechanism(s) underlying improved survival require further study.


Subject(s)
COVID-19 , Organ Transplantation , Humans , Organ Transplantation/adverse effects , Pandemics , SARS-CoV-2 , Transplant Recipients
3.
Am J Transplant ; 21(8): 2774-2784, 2021 08.
Article in English | MEDLINE | ID: covidwho-1234215

ABSTRACT

Lung transplant recipients (LTR) with coronavirus disease 2019 (COVID-19) may have higher mortality than non-lung solid organ transplant recipients (SOTR), but direct comparisons are limited. Risk factors for mortality specifically in LTR have not been explored. We performed a multicenter cohort study of adult SOTR with COVID-19 to compare mortality by 28 days between hospitalized LTR and non-lung SOTR. Multivariable logistic regression models were used to assess comorbidity-adjusted mortality among LTR vs. non-lung SOTR and to determine risk factors for death in LTR. Of 1,616 SOTR with COVID-19, 1,081 (66%) were hospitalized including 120/159 (75%) LTR and 961/1457 (66%) non-lung SOTR (p = .02). Mortality was higher among LTR compared to non-lung SOTR (24% vs. 16%, respectively, p = .032), and lung transplant was independently associated with death after adjusting for age and comorbidities (aOR 1.7, 95% CI 1.0-2.6, p = .04). Among LTR, chronic lung allograft dysfunction (aOR 3.3, 95% CI 1.0-11.3, p = .05) was the only independent risk factor for mortality and age >65 years, heart failure and obesity were not independently associated with death. Among SOTR hospitalized for COVID-19, LTR had higher mortality than non-lung SOTR. In LTR, chronic allograft dysfunction was independently associated with mortality.


Subject(s)
COVID-19 , Organ Transplantation , Adult , Aged , Cohort Studies , Humans , Lung , Organ Transplantation/adverse effects , SARS-CoV-2 , Transplant Recipients
4.
Nat Commun ; 12(1): 1079, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1087444

ABSTRACT

SARS-CoV-2 infection has been shown to trigger a wide spectrum of immune responses and clinical manifestations in human hosts. Here, we sought to elucidate novel aspects of the host response to SARS-CoV-2 infection through RNA sequencing of peripheral blood samples from 46 subjects with COVID-19 and directly comparing them to subjects with seasonal coronavirus, influenza, bacterial pneumonia, and healthy controls. Early SARS-CoV-2 infection triggers a powerful transcriptomic response in peripheral blood with conserved components that are heavily interferon-driven but also marked by indicators of early B-cell activation and antibody production. Interferon responses during SARS-CoV-2 infection demonstrate unique patterns of dysregulated expression compared to other infectious and healthy states. Heterogeneous activation of coagulation and fibrinolytic pathways are present in early COVID-19, as are IL1 and JAK/STAT signaling pathways, which persist into late disease. Classifiers based on differentially expressed genes accurately distinguished SARS-CoV-2 infection from other acute illnesses (auROC 0.95 [95% CI 0.92-0.98]). The transcriptome in peripheral blood reveals both diverse and conserved components of the immune response in COVID-19 and provides for potential biomarker-based approaches to diagnosis.


Subject(s)
COVID-19/genetics , Gene Expression Profiling/methods , Leukocytes, Mononuclear/metabolism , Sequence Analysis, RNA/methods , Transcriptome/genetics , COVID-19/blood , COVID-19/virology , Cytokines/genetics , Host-Pathogen Interactions , Humans , Influenza, Human/genetics , Pneumonia, Bacterial/genetics , SARS-CoV-2/physiology , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL